#### **Biophysical Chemistry for Life Scientists**

Biotechnology Research Center, National Taiwan University

Fall 2000

Instructor:

Sunney I. Chan

Vice President & Distinguished Research Fellow

Institute of Chemistry, Academia Sinica

Telephone: 2-2789-9402

E-mail: chans@chem.sinica.edu.tw

Lecture 1

Date: Monday, October 16, 2000

#### **Suggested Readings:**

Raymond Chang, "Physical Chemistry for the Chemical and Biological Sciences" (University Science Books) 2000, Chapters 1, 16 and 22.

### PHYSICAL CHEMISTRY

= Physical Description of Chemical Systems, or

Description of Chemical Systems explicitly in terms of the laws of physics

### **CHEMICAL SYSTEMS**

#### Gases

Molecular beams
Rarefied gases
Gases at low pressures
Real gases

#### **Liquids**

Pure liquids
Ideal solutions
Non-ideal solutions
Simple electrolyte solutions
Polyelectrolyte solutions
e.g., DNA, protein

#### **Solids**

Pure metals

Crystalline inorganic or organic compounds

**Solid solutions** 

**Powders** 

**Alloys** 

**Composites** 

Supramolecular assemblies

**Nanostructures** 

Glasses

Liquid crystals

**Protein crystals** 

#### **Surfaces**

Thin films

(supported on solid; between two immiscible liquids)

# **Biophysical Chemistry**

A DNA or RNA solution

A protein solution

A DNA or RNA crystal

A protein crystal

Protein-DNA or RNA complexes of

well-defined stoichiometry

**Protein-protein complexes** 

**Enzyme-inhibitor complexes** 

**Enzyme kinetics** 

Phospholipid membranes

Proteins in bilayer membranes

Cell membranes

Organelles and whole cells

Single DNA, RNA, or protein

Molecule

## **Biological Structure**

## **Primary Sequence**

DNA: sequence of nucleic acid bases (A, G, C,T) e.g., ATATGCGC or GCGCATAT

RNA: sequence of nucleic acid bases (A, G, C, U, and minor bases)

Protein: sequence of amino acids

Non-polar: A, V, L, I, F, W, M, P

Polar:

G, S, T, C, Y, N, Q

Acidic:

D, E

Basic:

K, R, H

Primary sequence gives

**CHEMICAL STRUCTURE!** 

## **Secondary Structure**

DNA: alpha helix (right hand; left hand)

RNA: alpha helix; loops

Proteins: double-helix; beta-sheets; loops;

Random coils

# **Tertiary Structure**

DNA: double-helix; triple-helix; aptamers

RNA: cloverleaf fold; other

Protein: three-dimensional fold

## **Quaternary Structure**

3-D structure = location of every atom of macromolecule in three-dimensional space

# **Structural Biology**

## In chemistry,

the chemical formula gives the number of each element in the molecule; the structure of a molecule is defined by the detailed arrangement of the atoms in three-dimensional space; and the properties of the molecule are determined by its molecular structure.

## Similarly, in biology

The three-dimensional fold of a macromolecule in the cell determines its properties and its biological function. Thus,

## STRUCTURE AND FUNCTION!

# Intermolecular Forces /Intermolecular Interactions

Intermolecular forces or intermolecular interactions are important in chemistry. Otherwise, there would be

no exchange of energy between molecules in the gas phase during collisions;

no formation of van der Waal molecules, such as A.HCl, (H<sub>2</sub>O)<sub>n</sub>;

no formation of condensed phases, i.e., liquids and solids

no chemical reactions

## Orders of magnitude:

Weak:

 $\ll k_BT$ 

Intermediate:

 $k_BT$ 

Strong:

 $\gg k_B T$ 

 $k_BT$  = thermal energy per molecule

 $k_B = 1.38 \times 10^{-16} \text{ ergs/K}$ 

and  $k_BT = 1 \times 10^{-21}$  calories

or 4.2 x 10<sup>-21</sup> joules

or 2.5 x 10<sup>-2</sup> eV

at room temperature, namely 300 K.

## **Intermolecular forces**

#### Electrostatic in nature

### **Strong:**

Exchange forces arising from overlap of electron charge clouds

Ion-monopole ion-monopole interactions

Hydrogen-bonding

Hydrophobic interactions

#### **Intermediate:**

**Electric dipole-dipole interactions** 

#### Weak:

Electric-dipole induced-dipole interactions

Spontaneous-dipole induced-dipole interactions

actions

# **Monopole-monopole interaction**

ion-pair C-CH2-CH2NH3 C-CH2-CH2-C

# **Hydrogen-bonding interaction**

# **Hydrophobic interaction**



# Amino acids with hydrophobic side-chains:

A, V, L, I, F, W, M

$$N-C-C$$

$$CH_{3}$$

$$(A)$$

$$(F)$$

# Consequences of Intermolecular Interactions

 $\Sigma$  interactions = Binding strength

**Define** 

Kequilibrium constant

If 
$$A + B \longrightarrow Complex$$
,

Then,

$$K = [Complex] / [A] [B]$$

Where [ ] denotes concentration of species at chemical equilibrium.

K large, strong interaction

K small, weak interaction

# **Antibody-antigen interactions:**

$$K = 10^8 - 10^{12}$$

# **Drug-Receptor Interactions:**

$$K = 10^6 - 10^{10}$$

# **Enzyme-substrate/inhibitor interactions**

$$K = 10^3 - 10^6$$

# **Importance of Biological Interactions**

Self-assembly of biological molecules

bilayer membranes

cytosketal system (microtubules and microfilaments)

muscle fibers

### Recognition

Antigen-antibody interaction

Enzyme-substrate/inhibitor interaction

Hormone-receptor interaction

**Drug-receptor interaction** 

#### **Chemistry**

**Signaling** 

**Energy transduction** 

**Transport** 

**Catalysis** 

Biological interactions are neither too strong or too weak!

If too weak, the interaction is not specific enough;

If too strong, it would require too much energy to break apart and recover original components after the biological event is accomplished.

So, biological macromolecules are characterized by a high degree of molecular motions:

Fast local motion of side-chains (often referred to as molecular motility; timescales of picoseconds to nanoseconds)

Slow collective motions of domains (timescales of milliseconds to microseconds)

Conformational transitions
(timescales of milliseconds to seconds)

# Important issues in Biophysical Chemistry

- 1) Three-dimensional structures of proteins, DNA's and RNA's.
- 2) The folding of a heteropolymer (RNA folding

and protein folding)

- a) three-dimensional fold at native state;
- b) density of conformational states at various energies;
- c) pathway(s) and kinetics of folding in solution;
- d) biological folding in the cell.
- 3) Macromolecular dynamics
  - a) breathing motions
  - b) collective fluctuations
  - c) conformational transitions

- 4) Prediction of protein structure and function
- 5) Relating molecular structure and dynamics to biological function in general
- 6) Signal transduction
- 7) Self-assembly and organization of biological macromolecules
- 8) Macromolecular recognition
- 9) Mechanism of energy transfer and energy transduction
  - a) transfer of light excitation
  - b) electron transfer
  - c) light driven ion and proton pumps
  - d) electron driven ion and proton pumps
  - e) conversion of redox energy and protonomotive force to synthesis of ATP
  - f) coupling of ATP hydrolysis to activate biochemical processes

- g) membrane-protein associated signal transduction linked to control of cellular differentiation and development
- 10) Mechanisms of solute transport across cellular membranes
- 10) Development of methods for macromolecular structural determination in solid state and in solution
- 12) Development of methods for determining the molecular weight, size, and shape of macromolecules
- 13) Imaging of specific macromolecules in cells
- 14) Imaging of single macromolecules
- 15) Single molecule spectroscopy

# Important new areas in biophysical chemistry

**Proteomics** 

**Bioinformatics** 

Structure determination of supramolecules including protein-protein complexes, protein-nucleic acid complexes, structures of complex RNA's and protein RNA structures; structures of organelles such as Golgi apparatus, lysosomes, etc.

Signaling and signal transduction

Imaging of single molecules

Pathways of in-vitro protein- and RNA fold ing and biological folding